
DRAFT

Vectorizing Device Model Evaluation in Ngspice circuit simulator
Florian Ballenegger, Anamosic Ballenegger Design

July 2020

Abstract
A method improving the execution speed of electrical
circuit simulation using vector processing is proposed.
The BSIM3V32 semi-conductor device model for the
open-source Ngspice simulator has been re-written for
evaluating multiple device instances of the same model
at once using Single Instruction Multiple Data (SIMD)
processor instructions. While parallel evaluation of de-
vice model was already available using multiprocessing,
the proposed method can achieve the same speed-up
using less processor resources, thus allowing to do more
parallel independant simulations for statistical analy-
sis.

1 Introduction
Circuit simulators are today a key tool for the succes-
full design and verification of modern integrated cir-
cuits (IC). Ngspice is an open-source simulator which
has evolved from the original SPICE3 code developped
at the University of California (US). Anybody can test
new features by enhancing the open-source code.

With the increasing complexity of IC designs, the
ability to simulate a circuit in many conditions in less
time is more and more important. While the clock
frequency of modern processors has not significantly
increased recently, their architecture now offers several
forms of parallelism which can be exploited to drasti-
cally increase the execution speed of a program. The
two main forms of parallelism are:

• Multiprocessing or task-parallelism. Processors
commonly includes several cores on the same chip,
each core can execute a different task.

• Vector processing or data-parallelism. Specific in-
structions can process multiple data at the same
time. The same task can be made on several data
set simultaneously, with typical vector length of
4 double precision floating point numbers (AVX2)
or 8 (AVX-512).

The semi-conductor device model evaluation is the
task taking the most execution time of the simulation
for medium-sized circuits [2]. Matrix solving dominates
only with circuits having huge number of nodes, as it
is often the case when simulating circuit with precise
extracted interconnect parasitics.

While Ngspice does support parallel evaluation
of device models using multiprocessing through the

OpenMP API [6], it can be argued that in some im-
portant use cases this method does not bring any ben-
efit, especially when corners or statistical MonteCarlo
analysis is to be performed. As the multiprocessing
resources will already be used by running several inde-
pendant simulations simultaneously on different cores,
using those same resources for parallel device model
evaluation does not achieve any global speed-up.

In constrast, vector processing is a cheaper resource
and does not compete with multiprocessing when sev-
eral simulations are run for statistical analysis. Fur-
thermore, vector processing and multiprocessing can
be combined when only one simulation run is desired,
achieving even greater speed-up.

In this work we implemented vectorized evaluation
of MOSFET devices using the BSIM3V32 model in the
Ngspice simulator. Compared to previously published
works [1, 7, 8] which either operate on special hard-
ware or within a totally new simulator architecture, our
method easly integrates into a well established open-
source simulator and runs on common hardware.

2 Implementation

2.1 Overview
In general, we can distinguish four methods for using
vector processing in a program code:

• Automatic compiler vectorization
The code is written in a way that the compiler can
automatically vectorize, either knowing how the
compiler works or using the OpenMP directives
omp parallel simd.

• Use of vectorized library
All calculation are made trough a library which
is carefully implemented for using the vector pro-
cessing resources.

• Compiler vector extension
GCC and clang compilers both support vector ex-
tension for the C language. With those extensions
the same operators used in sequential code (+, -,
*, /, &, etc) are re-interprated to operate on vector
data.

• SIMD Instrinsics.
The intrinsics are like compiler built-in functions
that directly map SIMD instructions for a specific

1

DRAFT

target processor architecture. They can be used
from the C language on C-declared variables1.

Vectorizing condititional branches is the main chal-
lenge. If the branch to execute depends on the data
processed, different arms could need to be executed
when processing several data in a vector. The com-
mon solution is to compute all arms and a mask vector
capturing the condition. Then the vectors computed
in the different arms are combined using the condition
mask by a so-called blend operation [4].

It has been found that the GCC compiler2 is un-
able to automatically vectorize the BSIM3V32 model
code due to many conditional branches and function
calls present, even if using OpenMP parallel simd
constructs with detailed directives. Thus we decided
to write explicit vector code using the compiler vector
extension, which allows for a more portable code com-
pared to using intrinsics, specific to e.g. the x86 64
architecture.

2.2 Instance grouping
We first indentify the data and parameters which are
uniform, i.e. which are the same for all device instances
evaluated in one vector. In order to minimize the
number of conditional branches to be transformed into
masked blending recombination, the instances are first
grouped by similarity based on the W, L, geo, nqsMod
and off parameters.

2.3 Source code transformation
The BSIM3V32 code has more than three thousand
lines. To manually transform this chunk of code would
be too tedious and error-prone. We decided to write
a tool called simdify to automatically perform the re-
quired transformations. simdify is written in python
using the widely available C parser pycparser to gen-
erate an Abstruct Syntax Tree (AST) of the original
code. This tree is then analyzed and transformed by
the tool, before being written back into C language,
using the same pycparser module. The number of ele-
ments packed into one SIMD vector is configurable on
invokation of the tool, and is denoted NSIMD.

In the following code examples, NSIMD=4. The orig-
inal model code snippets are denoted with a light red
background, and here refers to the processed instance
data structure. The transformed SIMD model code
snippets are denoted with a light green background,
and heres[NSIMD] refer to a vector array of all pro-
cessed instances in one SIMD evaluation.

The tool performs the operations enumerated below:

1. For every expression, recursively find if it depends
on uniform data only. Attach this information to
the assigned variable when an assignment operator
is encountered.

1Compared to assembly, this avoids the need to manually
allocates register and to manage the stack.

2and probably other compilers too

2. Alter declaration of variables for using vector type
for all non-uniform variables.

double dT1 dVg ;
Vec4d dT1 dVg ;

3. Indentify conditional branches which depend on
non-uniform data. Transform those branches into
a vectorized version using masked blending 3.

i f (T0 >= − 0 . 5)
{ T1 = 1.0 + T0 ;

T2 = pParam−>BSIM3v32dvt2 ;
}
else
{ T4 = 1.0 / (3 . 0 + 8 .0 ∗ T0) ;

T1 = (1 . 0 + 3 .0 ∗ T0) ∗ T4 ;
T2 = pParam−>BSIM3v32dvt2 ∗ T4 ∗ T4 ;

}
i f (1)
{

Vec4m mask0 = T0 >= (−0.5) ;
Vec4m mask true0 = mask0 ;
Vec4m mask fa l s e0 = ˜mask0 ;
{

T1 = vec4 b lend (T1 , 1 .0 + T0 , mask true0) ;
T2 = vec4 b lend (T2 , vec4 SIMDTOVECTOR(pParam
−>BSIM3v32dvt2w) , mask true0) ;

}
{

T4 = vec4 b lend (T4 , 1 .0 / (3 . 0 + (8 . 0 ∗ T0)) ,
mask fa l s e0) ;

T1 = vec4 b lend (T1 , (1 . 0 + (3 . 0 ∗ T0)) ∗ T4 ,
mask fa l s e0) ;
T2 = vec4 b lend (T2 , (pParam−>BSIM3v32dvt2w ∗
T4) ∗ T4 , mask fa l s e0) ;

}
}

4. When a vector variable was assigned to a con-
stant, replace this scalar constant with a vector
constant4.

dQac0 dVd = 0 ;
dQac0 dVd = (Vec4d) {0 , 0 , 0 , 0} ;

5. When some non-uniform instance data was loaded
from memory, load data from several instances
into a single vector (gather operation).

V3 = here−>BSIM3v32vfbzb
− V gs e f f + VbseffCV − DELTA 3 ;

V3 = ((((Vec4d){
here s [0]−>BSIM3v32vfbzb ,
here s [1]−>BSIM3v32vfbzb ,
here s [2]−>BSIM3v32vfbzb ,
here s [3]−>BSIM3v32vfbzb })
− V gs e f f) + VbseffCV) − DELTA 3 ;

6. When some uniform instance data was loaded
from memory, just load the data for the first in-
stance into a scalar value. This can happend be-
cause the devices were grouped for sharing same
values for this parameter.

i f (here−>BSIM3v32nqsMod)
i f (here s [0]−>BSIM3v32nqsMod)

7. When some instance data was written to memory,
write each element of the vector to each instance
data (scatter operation).

8. The above instance data read and write transfor-
mations also apply to circuit state read or write
which are recognized by the tool.

3Unlimited number of imbricated conditional branches are
handled, however with some impact on the performance of the
transformed code.

4The compiler allows to combine scalars and vectors in oper-
ators found in expressions, but not in assignments.

2

DRAFT

here−>BSIM3v32cgsb = −(Cgg + Cgd + Cgb) ;
{

Vec4d va l = −((Cgg + Cgd) + Cgb) ;
here s [0]−>BSIM3v32cgsb = val [0] ;
he re s [1]−>BSIM3v32cgsb = val [1] ;
he re s [2]−>BSIM3v32cgsb = val [2] ;
he re s [3]−>BSIM3v32cgsb = val [3] ;

}

9. For function calls, the function name is prefixed
for indicating that a vector version of the func-
tion need to be called. The vector version of the
function needs then to be linked to an existing
equivalent vector function from a library, or to be
written by hand.

ExpVgst = exp (T0) ;
ExpVgst = vec4 exp (T0) ;

10. For function calls interacting with the simulator
internals, the same call is just made sequentially
with the data for each instance in the vector sep-
arately.

e r r o r = NI in t eg ra t e (ckt , &geq , &ceq , 0 . 0 , here−>
BSIM3v32qb) ;

s t a t i c i n l i n e int
vec4 NI in t eg ra t e (CKTcircuit∗ ckt , double∗ geq ,

double ∗ceq , double zero , Vec4m charge s ta t e)
{

int e r r o r ;
for (int idx =0; idx<NSIMD; idx++)
{

e r r o r = NI in t eg ra t e (ckt , geq , ceq , zero ,
cha rge s ta t e [idx]) ;
i f (e r r o r) return e r r o r ;

}
return e r r o r ;

}

e r r o r = vec4 NI in t eg ra t e (ckt , &geq , &ceq , 0 . 0 ,
(Vec4m){
here s [0]−>BSIM3v32qb , here s [1]−>BSIM3v32qb ,
here s [2]−>BSIM3v32qb , here s [3]−>BSIM3v32qb}) ;

2.4 Manual modifications
Some modifications in the original code have been
made manually.

2.4.1 Reduction

In one place in the code, the number of non-converged
devices is added into a global counter:
i f (Check==1) ckt−>CKTnoncon++;

This has to be replaced by a count of the non-
converged devices in the processed vector:
ckt−>CKTnoncon += SIMDCOUNT(Check) ’

where the function SIMDCOUNT performs a horizon-
tal sum reduction on the Check vector.

2.4.2 Optimization

Math functions like exp and log are time consuming.
Where the same exp or log computation was made in
diffrent arms of a conditional branch, it is more effi-
cient to move and precompute this expression outside
the conditional branch. This way only one expensive
computation is made except of two or more.

2.4.3 Vector Mathematical Functions

Vector implementation of 5 mathematical functions
must be provided: exp, log, sqrt, MAX and fabs, all
function being prefixed with vecN where N=NSIMD. The
blending operation vecN blend must also be provided.

Some of those functions are available as x86 64
intrinsics[3]. While using intrinsics leads for sure to
a loss of portability, the speed advantage is noticeable.
It would be easy to change some macro definition to
support a more portable solution.

GCC compiler comes with a vector mathematical li-
brary called libmvec5, which conveniently implements
a vector version of exp and log functions very effi-
ciently6.

Another option would be to use an open-source vec-
tor mathematical library written in C as in [5].

The following mapping is used when NSIMD=4:
Function Mapped to Type
vec4 sqrt mm256 sqrt pd intrinsic
vec4 MAX mm256 max pd intrinsic
vec4 blend mm256 blendv pd intrinsic
vec4 exp ZGVdN4v exp libmvec
vec4 log ZGVdN4v log libmvec
vecN fabs vecN_blend(x,-x,x<0) equival.

2.5 Bypass
The BSIM3V32 model supports a bypass mode which
applies when the terminal voltages of a device do not
change. In this case it is not required to evaluate
the model again and the calculations are just skipped.
However in a SIMD environment, the control flow must
be the same for the whole data set in the SIMD vector,
thus it is not possible to apply bypass for only a few
instances in the processed vector.

As work-around solution, the following mechanism
is used. First the original sequential model code is en-
tered up to the point where it is decided if bypass has
to be applied. If bypass occurs, the sequential model
just completes (skipping all calculations) and the de-
vice is marked as completed. In the other case, the se-
quential model code stops, stores 7 intermediate data
calculated so far, and returns. The instances for which
the sequential model has not yet completed due to by-
passing are then collected in groups of NSIMD devices
to be evaluated by the SIMD model code. The latter
starts where the sequential code has stopped, loading
the 7 intermediate data previously stored.

The remaining devices which do not fit into a full
vector of NSIMD devices are eventually evaluated by
the original sequential code.

3 Results
Both the original Ngspice software version 32 and the
modified code was compiled with GCC7 version 9.3.0

5The same vector math library is also available when using
the clang compiler with vector extensions.

6with however a small loss of accuracy
7compilation with clang yield similar execution speed

3

DRAFT

in different configurations as summarized in table 1.
The -march=native flag was also specified.

All versions are executed on a computer powered by
an i7-6700 CPU running at 3.40GHz and featuring 4
physical cores, each core including the AVX2 vector
processing unit. The operating system is linux Ubuntu
16.04. The version compiled with OpenMP multipro-
cessing was executed with 4 threads.

The test circuit is a ring oscillator with 128 stages,
simulated with transient analysis for 100ns (about 10
oscillator periods). The transistors use a BSIM3V3
model from the industry for a 0.18 um technology.

For the test case T1, one simulation at typical con-
ditions is launched, while for test case T16, 16 sim-
ulations with different power supply and temperature
conditions are launched in parallel8.

Original Ngspice︷ ︸︸ ︷ Modified︷ ︸︸ ︷
Normal MP SIMD SIMDMP

optim O3 O3 O3 O3
OpenMP no yes no yes

T1 [s] 10.54 5.4 5.53 3.64
speed-up 1 1.95 1.9 2.9

T16 [s] 38.0 84.9 22.33 65.36
speed-up 1 0.45 1.7 0.58
T16/T1 3.6 15.7 4.04 17.7

Table 1: Execution speed comparison.
For test T1, the proposed vector processing achieves

a speed-up of 1.9x, while multiprocessing is at 1.95x.
Combining vector processing and multiprocessing is
even faster with an 2.9x speed-up. This shows that
the two approaches are using complementary comput-
ing resources which do not compete.

For test T16 however, only the vector processing
approach is faster at a decent 1.7x speed-up, while
the use of multiprocessing is slower and even counter-
productive. This shows that for a batch of multiple
simulations, it is more efficient to use the processor
cores to run multiple independant simulations in par-
allel than for multiprocessing inside each simulation.

The batch of 16 simulations of T16 completes in only
4.04 more time than the single simulation of T1, thanks
to the power of the 4 processor cores which by this
way proves to still be fully available when using vector
processing in each core9.

4 Conclusions
Our work shows that vectorization of device model
evalulation in a circuit simulation is possible and effi-
cient when running on common CPUs found in modern
desktop and server computers.

8For some reason, running multiple Ngspice simulations with
OpenMP at the same time was performing extremely slowly, thus
we instead run the 16 simulations sequentially.

9T16/T1=4.04 is not exactly 16 sims / 4 cores = 4 because
each simulation in the batch has different conditions and does
not takes exactly the same time. Also heat production under
intensive use does slow down the processor a bit.

By using SIMD instructions, only one processor core
will be loaded by one simulation, which allows to per-
form statistical analysis by running multiple simula-
tions in parallel on all processor cores efficiently.

For when only one simulation is required, further ac-
celeration is achieved by combining the proposed vec-
torization with OpenMP multiprocessing.

In futur work and experimentations, the perfor-
mance using vectors with 8 elements should be investi-
gated, either on a computer with an AVX-512 unit, or
by packing 8 single precision float in an AVX2 unit.

Only the BSIM3V32 device model was modified to
use vector processing. Other device models would of
course also benefit from the proposed method. In par-
ticular interest would be the EKV model [9], as the
calculations in this symmetric model are more linear
with fewer conditional branches and could be vector-
ized more efficiently.

For compact models written in Verilog-A, a promis-
ing approach would be to perform code vectorization
during model compilation, instead of transforming the
C code.

The source code of the modified BSIM3V3 model
is available at https://www.anamosic.com/pages/
ngspice.html.

References
[1] A. Vladimirescu, LSI Circuit Simulation on Vector

Computers, Memorandum No. UCB/ERL M82/75,
1982.

[2] F. Lannutti, P. Nenzi and M. Olivieri, KLU sparse
direct linear solver implementation into NGSPICE,
Proceedings of the 19th International Conference
Mixed Design of Integrated Circuits and Systems -
MIXDES 2012, Warsaw, 2012, pp. 69-73.

[3] Intel Intrinsics Guide, https://software.intel.
com/sites/landingpage/IntrinsicsGuide

[4] Wende F., Noack M., Steinke T., Klemm M., New-
burn C.J., Zitzlsberger G. (2016) Portable SIMD
Performance with OpenMP* 4.x Compiler Direc-
tives. In: Dutot PF., Trystram D. (eds) Euro-Par
2016: Parallel Processing. Euro-Par 2016. Lecture
Notes in Computer Science, vol 9833. Springer,
Cham

[5] Christoph Lauter, A new open-source SIMD vec-
tor libm fully implemented with high-level scalar
C, 2016 50th Asilomar Conference on Signals, Sys-
tems and Computers, Nov 2016, Pacific Grove, US.
pp.407 - 411, 10.1109/ACSSC.2016.786907. hal-
01511131

[6] R. Perng, T. Weng, and K. Li, On performance
enhancement of circuit simulation using multi-
threaded techniques, in Computational Science and
Engineering, 2009. CSE’09. International Confer-
ence on, vol. 1. IEEE, 2009, pp. 158–165.

4

https://www.anamosic.com/pages/ngspice.html
https://www.anamosic.com/pages/ngspice.html
https://software.intel.com/sites/landingpage/IntrinsicsGuide
https://software.intel.com/sites/landingpage/IntrinsicsGuide

DRAFT

[7] H. Peng and C. Cheng, Parallel transistor
level full-chip circuit simulation, 2009 Design,
Automation & Test in Europe Conference
& Exhibition, Nice, 2009, pp. 304-307, doi:
10.1109/DATE.2009.5090677.

[8] K. C. A. Lam and M. Zwolinski, ”Circuit sim-
ulation using state space equations,” Proceed-
ings of the 2013 9th Conference on Ph.D.
Research in Microelectronics and Electronics
(PRIME), Villach, 2013, pp. 177-180, doi:
10.1109/PRIME.2013.6603135.

[9] Enz, C. C.; Krummenacher, F.; Vittoz, E.A.
(1995), An Analytical MOS Transistor Model Valid
in All Regions of Operation and Dedicated to Low-
Voltage and Low-Current Applications, Analog In-
tegrated Circuits and Signal Processing Journal
on Low-Voltage and Low-Power Design 8: 83–114,
July 1995, doi:10.1007/BF01239381

5

	Introduction
	Implementation
	Overview
	Instance grouping
	Source code transformation
	Manual modifications
	Reduction
	Optimization
	Vector Mathematical Functions

	Bypass

	Results
	Conclusions

